Service Template Version 1.01

FanSpeed:1 Service Template
For UPnP™ Device Architecture V 1.0

Status: Standardized DCP
Date: May 13", 2003

This Standardized DCP has been adopted as a Standardized DCP by the Steering Committee of
the UPnP Forum, pursuant to Section 2.1(c)(ii) of the UPnP Membership Agreement. UPnP
Forum Members have rights and licenses defined by Section 3 of the UPnP Membership
Agreement to use and reproduce the Standardized DCP in UPnP Compliant Devices. All such
use is subject to all of the provisions of the UPnP Membership Agreement.

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL
PROPERTY RIGHTS EXIST IN THE STANDARDIZED DCPS. THE STANDARDIZED DCPS
ARE PROVIDED "AS IS" AND "WITH ALL FAULTS". THE UPNP FORUM MAKES NO
WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO
THE STANDARDIZED DCPS INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES
OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR
PURPOSE, OF REASONABLE CARE OR WORKMANLIKE EFFORT, OR RESULTS OR OF
LACK OF NEGLIGENCE.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved

Authors Company

Larry Stickler Honeywell

Andrew Fiddian-Green Siemens Building Technologies

FanSpeed:1 2
Contents
1. OVERVIEW AND SCOPE 3
LI, CHANGE LOG ..ottt st st s 3
2. SERVICE MODELING DEFINITIONS 3
2.1 SERVICE TYPE ..ottt s 3
2.2, STATE VARIABLEScoutiitiititintitenttete ettt eteste st et sat et et et enbe st bt saeeutestesseaesaesbesaeebeeneennensensennenaens 4
221, FaRSPEEATAFGEL ..o e 4
2.2.2. FanSPECASIALUSccooeviiieiiiiciiee ettt a ettt 4
2.2.3. DirectionTATGELcoucovuiiiiiiiiiiieiee e 4
2.24. DIiFECHIONSIATUS ... ettt ettt ettt 4
2.2.5. Relationships Between State VariabIesccoeeveioiieeiieeiieeiieeiieeieesieesee e sve e 5
2.3. EVENTING AND MODERATIONuuutiiiiteeieiiiiiereeeeeeasstrueeeeeeessosssseeessesssssssesssssssssssssesssssssssssssesesessns 6
204, ACTIONS. ...ttt e a e s 6
24.1. SOUFANSPOEOU ...ttt 6
2.4.2. GEIFANSPEEA ...t ettt e et e e e et eenaae e ntbe e enaee s 7
2.4.3. GEtFANSPEEATAVZEL ..ottt sre s 8
2.44. SCLEANDITECHION ...ttt e e e e et e e e eaaseeeeareeas 8
2.4.5. GELEANDIFECIION. ...ttt ettt ettt e et et ee e e 9
2.4.6. GetFanDireCtioNTATZELc.cocuiiiiiiieieeee ettt ettt 9
2.4.7. Non-Standard Actions Implemented by an UPnP Vendor..................ccccccovevvveviieceecnannnnn. 10
2.4.8. Relationships BetWeen ACLIONSc.ccccuiiiiiiiiiiriieiiei sttt 10
2.4.9. Common Action E¥rOr COAEScccoiiiouiiieiieei ettt 10
2.5, THEORY OF OPERATIONcociiiiiiiiriiniieitenteteteie sttt estestessesesse st esesseessensesaesesaessesueeseensensensensensenne 10
3. XML SERVICE DESCRIPTION 12
4. TEST 15
List of Tables
Table 1: State VArIADLESc.oouiiiiiiieieeieieei ettt et sttt b e ee st e st e et et e e beebeebeeseeneeneansenseseeeneene 4
Table 2: Modulating Fan EXamPLecooiiiiiiiieeeee et s 5
Table 3: Three-Speed Fan EXAMPIEcocuivoiiiiiiiieiciee ettt ee e 5
Table 4: EVENt MOAETALIONcuiiiiriiiiitiitieieeieeitete ettt ettt sb e eb et s et e et sb e b bt eb e et et enaenbe b e 6
TADLE 51 ACHIONS ...ttt ettt ettt st b et e bt e a e e a e e bt e bt e bt en bt s et e eh e e bt ettt sateeaeenaeenbeenee 6
Table 6: Arguments for SEtFaNSPEEA..........couiiiiiiiiiee e 6
Table 7: Arguments for GEtFanSPeed..........ccuevieiieiieieiie ettt se e 7
Table 8: Arguments for GetFanSpeedTargetcccvevueevuiriiiierieiieieee ettt sre e erae e se s e 8
Table 9: Arguments fOor SEDITECTIONcc.eiiuiiiiiieiiieee ettt ettt sttt st e e e e e 8
Table 10: Arguments fOr GEtDITECHION.eeouiriiiieiierie ettt ettt ettt eeee s eeesreeeeeeesneeeneeseeenes 9
Table 11: Arguments for GetDIreCtionNTarZEtccveruierieeiieierierit ettt sreeseseesnee e eseenes 9

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

FanSpeed:1

1. Overview and Scope

This service definition is compliant with the UPnP Device Architecture version 1.0. It defines a service
type referred to herein as FanSpeed:1

FanSpeed:1 provides programmatic control and status information for air fans used in Heating Ventilation
and Air-Conditioning (HVAC) applications. It allows a control point to command the speed of the fan by
means of a continuous 0% to 100% control variable. Fans which are On/ Off or three speed (Off/ Low/
Medium/ High) respond by mapping the continuous control variable to specific vendor dependant
switching points. It provides optional functionality for dual direction reversible fans.

FanSpeed:1 enables the following functions:
e Control of the speed of an air-conditioning or ventilation fan.

e Reversible fans

1.1. Change Log
[07 Sep 200] v0.2 Document re-created in new template format, importing from v0.1 document.
[19 Oct2000] v0.21 Corrected eventing specification.

[12 Dec 2000] v0.7 Updated to template v1.0 and checked according to checklist v0.9
Optional reversible fan functionality added.

[14 Dec 2000] v0.81 Merged with L. S. inputs: i) use Boolean instead of string for the “direction”
state variables, ii) use L. S. naming for “direction” actions, iii) use AFG
naming for “direction” variables, iv) use L. S. preferences for event moderation
of direction” changes. Moved to Template Design Complete

[23 Jan 2001] v0.82 Corrections based on checklist v0.9, structure adapted to template v1.01 and
Argument names changed to be different from Related State Variable names.

[23 Feb 2001] v0.83 GetFanSpeedTarget and GetDirectionTarget added.

[19 Apr2001] v0.87 Version number increased to match remainder of the HVAC services set. No
editorial changes...

[31 May 2002] v0.9 Revision marks removed. Test chapter added.

[13 May 2003] v1.0 Converted to Approved Standard.

2. Service Modeling Definitions

2.1. Service Type
The following service type identifies a service that is compliant with this template:
urn:schemas-upnp-org:service: FanSpeed: 1

The shorthand FanSpeed:1 is used herein to refer to this service type.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

FanSpeed:1 4

2.2. State Variables

Defines the state variables for the target running speed of the fan and its actual speed. Additionally defines
optional state variables for “forward” and “reverse” operation.

NOTE: (Explanation of the meaning of speed): Table 1 below describes Allowed Value ranges of 0 to 100
which signify a fan speed in the range of 0% to 100%. In all such cases, a value of 0% corresponds to a
FULLY STOPPED physical condition, and a value of 100% corresponds to the FULL SPEED physical
condition. For values between 0% and 100% the physical condition of the fan is mapped as closely as
possible to the 0% to 100% control variable. In particular for fans with discrete speeds (e.g. Off/ Low/
Medium/ High) the mapping takes the form of a “staircase”. The exact mapping is left to the vendor’s
discretion.

Table 1: State Variables

Variable Name Data Allowed Value® Default

Type Value®
FanSpeedTarget R uil >=0,<=100,+=1 0 Percent
FanSpeedStatus R uil >=(0,<=100,+=1 0 Percent
DirectionTarget O boolean | 0=“Forward”, 0 n/a

1 =“Reverse”

DirectionStatus O boolean 0 = “Forward”, 0 n/a
1 =“Reverse”

Non-standard state X TBD TBD TBD TBD
variables implemented
by an UPnP vendor go
here.

"R = Required, O = Optional, X = Non-standard.
? Values listed in this column are (all) required.

2.2.1. FanSpeedTarget

Determines the target speed for the fan. (See the above note “Explanation of the meaning of speed”).

2.2.2. FanSpeedStatus

Represents the actual speed for the fan. (See the above note “Explanation of the meaning of speed”).

2.2.3. DirectionTarget

Determines the target running direction for the fan. This is an optional state variable; in the case of fans
that do not implement this state variable, they must behave as if DirectionTarget were equal to 0 i.e.
“Forward”.

2.2.4. DirectionStatus

Represents the actual running direction for the fan. This is an optional state variable; in the case of fans
that do not implement this state variable, a control point must behave as if DirectionStatus were equal to 0
i.e. “Forward”.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

FanSpeed:1 5

2.2.5. Relationships Between State Variables

Whenever the value of FanSpeedTarget changes, the actual physical fan speed should start to change
toward the value of FanSpeedTarget according to the mapping illustrated in the examples below. Due to
the physical inertia of the fan, this process will take a certain period of time that depends on the vendor’s
implementation. The value of the FanSpeedStatus state variable should correspond to the actual physical
fan speed according to the mapping illustrated in the examples below.

FanSpeedTarget and FanSpeedStatus are integers with the range 0% to 100%. Depending on the actual
type of fan employed (e.g. three speed fan, modulating fan etc.), the 0...100% range should map to the
actual physical fan speed according to the following principles.

Two common examples are given below for guidance, but actual implementation is at the discretion of the
vendor:

Table 2: Modulating Fan Example

Input of Setting of Resulting Actual Resulting value of
FanSpeedTarget Physical Speed FanSpeedStatus
0% Off (“hard” off) 0%
1...Minimum Speed (i.e. Stalling Off (“soft” off) 1%
Speed)%
Min. Stall Speed...100% Linear mapping according to | Actual speed:
the value of FanSpeedTarget | (Min. Stall Speed ... 100%)

Table 3: Three-Speed Fan Example

Input of Setting of Resulting Actual Resulting value of

FanSpeedTarget Physical Speed FanSpeedStatus

0% Off (“hard” off) 0%

1...25% Off (“soft” off) Same mapping as
FanSpeedTarget

26...50% Low ditto

51...75% Medium ditto

76...100% High ditto

NOTE: To facilitate certification, UPnP vendors should include their own version of the mapping table
illustrated above.

Whenever the value of DirectionTarget changes, the actual physical fan direction should start to change
toward the value of DirectionTarget. Due to the physical inertia of the fan, this process will take a period
of time that depends on the vendor’s implementation. The corresponding value of the DirectionStatus state
variable should in turn reflect the actual physical fan direction.

NOTES:

i) If the actual physical fan speed or direction deviates from what is expected in
FanSpeedTarget or DirectionTarget, then the corresponding xxxStatus state variable should
reflect the real physical fan status and NOT the xxxTarget values.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

FanSpeed:1

ii) Vendors that implement control point strategies should bear in mind that due to friction,
inertia, hysteresis and numerical rounding it is quite possible that the xxxStatus variables will
take an indeterminate time to reach the value of the corresponding xxxTarget variables.
Indeed (especially in the case of the fan speed), it is quite likely that the xxxStatus variable

might never achieve exactly the same value as the xxxTarget variable.

Relationships between standard state variable(s) defined herein and any non-standard state variable(s) is

TBD.

2.3. Eventing and Moderation

Table 4: Event Moderation

Variable Name Evented Moderated Max Event Logical Min Delta
Event Rate’ Combination per Event?

FanSpeedTarget no

FanSpeedStatus yes yes 30 OR 10 * (Step)

DirectionTarget no

DirectionStatus yes no

Non-standard state TBD TBD TBD TBD TBD

variables implemented by

an UPnP vendor go here.

' Determined by N, where Rate = (Event)/(N secs).
?(N) * (allowedValueRange Step).

2.4. Actions

Table 5: Actions

Name Req. or Opt. '

SetFanSpeed

GetFanSpeed

GetFanSpeedTarget

SetFanDirection

GetFanDirection

GetFanDirectionTarget

x| Ol oo R R R

Non-standard actions implemented by an UPnP vendor go here.

"R = Required, O = Optional, X = Non-standard.

2.4.1. SetFanSpeed

Sets the new value of FanSpeedTarget.

2.4.1.1. Arguments
Table 6: Arguments for SetFanSpeed

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

FanSpeed:1 7
Argument Direction relatedStateVariable
NewFanSpeedTarget IN FanSpeedTarget

2.4.1.2. Dependency on State

None.

2.4.1.3. Effect on State

Sets the new value of FanSpeedTarget. The actual physical fan speed, (and thus the value of
FanSpeedStatus), should map to FanSpeedTarget according to section 2.2.

2.4.1.4. Errors

ErrorCode errorDescription Description

402 Invalid Args See UPnP Device Architecture section on Control.
501 Action Failed See UPnP Device Architecture section on Control.
800-899 TBD (Specified by UPnP vendor.)

2.4.2. GetFanSpeed

Returns the current value of FanSpeedStatus.

2.4.2.1. Arguments

Table 7: Arguments for GetFanSpeed

Argument Direction relatedStateVariable
CurrentFanSpeedStatus ouT® FanSpeedStatus
® = Return Value (RETVAL)
2.4.2.2. Dependency on State
Returns the current value of FanSpeedStatus.
2.4.2.3. Effect on State
None.
2.4.2.4. Errors
errorCode errorDescription Description
402 Invalid Args See UPnP Device Architecture section on Control.
501 Action Failed See UPnP Device Architecture section on Control.
800-899 TBD (Specified by UPnP vendor.)

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

FanSpeed:1

[~]

2.4.3. GetFanSpeedTarget

Returns the current value of FanSpeedTarget.

2.4.3.1. Arguments
Table 8: Arguments for GetFanSpeedTarget

Argument Direction relatedStateVariable
CurrentFanSpeedTarget ouT*® FanSpeedTarget
® = Return Value (RETVAL)

2.4.3.2. Dependency on State
Returns the current value of FanSpeedTarget.

2.4.3.3. Effect on State
None.

2.4.3.4. Errors

errorCode errorDescription Description

402 Invalid Args See UPnP Device Architecture section on Control.
501 Action Failed See UPnP Device Architecture section on Control.
800-899 TBD (Specified by UPnP vendor.)

2.4.4. SetFanDirection

Sets the new value of DirectionTarget.

2.4.4.1. Arguments

Table 9: Arguments for SetDirection

Argument Direction RelatedStateVariable
NewDirectionTarget IN DirectionTarget

2.4.4.2. Dependency on State
None.

2.4.4.3. Effect on State

Sets the new value of DirectionTarget. The actual physical fan direction, (and thus the value of
DirectionStatus), should follow DirectionTarget.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

FanSpeed:1 9

2.4.4.4. Errors

errorCode errorDescription Description

402 Invalid Args See UPnP Device Architecture section on Control.
501 Action Failed See UPnP Device Architecture section on Control.
800-899 TBD (Specified by UPnP vendor.)

2.4.5. GetFanDirection

Returns the current value of DirectionStatus.

2.4.5.1. Arguments

Table 10: Arguments for GetDirection

Argument Direction RelatedStateVariable
CurrentDirectionStatus out® DirectionStatus

® = Return Value (RETVAL)

2.4.5.2. Dependency on State
Returns the current value of DirectionStatus.

2.4.5.3. Effect on State

None.

2.4.5.4. Errors

errorCode errorDescription Description

402 Invalid Args See UPnP Device Architecture section on Control.
501 Action Failed See UPnP Device Architecture section on Control.
800-899 TBD (Specified by UPnP vendor.)

2.4.6. GetFanDirectionTarget

Returns the current value of DirectionTarget.

2.4.6.1. Arguments
Table 11: Arguments for GetDirectionTarget

Argument Direction RelatedStateVariable
CurrentDirectionTarget ouT*® DirectionTarget

® = Return Value (RETVAL)

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

FanSpeed:1 10

2.4.6.2. Dependency on State
Returns the current value of DirectionTarget.

2.4.6.3. Effect on State
None.

2.4.6.4. Errors

errorCode errorDescription Description

402 Invalid Args See UPnP Device Architecture section on Control.
501 Action Failed See UPnP Device Architecture section on Control.
800-899 TBD (Specified by UPnP vendor.)

2.4.7. Non-Standard Actions Implemented by an UPnP Vendor

To facilitate certification, non-standard actions implemented by an UPnP vendor should be included in
this service template. The UPnP Device Architecture lists naming requirements for non-standard actions
(cf. section on Description).

2.4.8. Relationships Between Actions
The actions defined herein may be called in any order.

Relationships between standard action(s) defined herein and any non-standard action(s) is TBD.

2.4.9. Common Action Error Codes

The following table lists error codes common to actions for this service type. If an action results in multiple
errors, the most-specific error should be returned.

errorCode errorDescription Description

401 Invalid Action See UPnP Device Architecture section on Control.

402 Invalid Args See UPnP Device Architecture section on Control.

404 Invalid Var See UPnP Device Architecture section on Control.

501 Action Failed See UPnP Device Architecture section on Control.

600-699 TBD Common action errors. Defined by UPnP Forum Technical
Committee.

800-899 TBD (Specified by UPnP vendor.)

2.5. Theory of Operation

Control Points will use SetFanSpeed to set the value of FanSpeedTarget; this in turn determines the
running speed of the fan. Depending on the type of fan, it must adjust its actual physical speed to a value
matching as closely as possible to the FanSpeedTarget — some examples of possible mappings are given in
section 2.2. Due to the physical inertia of the fan, the physical fan speed and hence the value of
FanSpeedStatus will take a period of time to “catch up” with FanSpeedTarget.

Control Points may interrogate the actual fan speed by calling GetFanSpeed. This function reads the value
of FanSpeedStatus. In normal operation conditions, in the steady state, FanSpeedStatus will return +/- the
same value as FanSpeedTarget. However, in the case of faults, or external overrides, the actual fan speed

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

FanSpeed:1 11

may differ from that requested by FanSpeedTarget. In such cases, FanSpeedStatus must return the actual
physical speed in accordance with the mapping examples in section 2.2.

Similarly, Control Points will use SetFanDirection to set the value of DirectionTarget; this in turn
determines the running direction of the fan. Depending on the type of fan, it must adjust its actual physical
direction to the DirectionTarget. Due to the physical inertia of the fan, the physical fan speed and hence
the value of DirectionStatus will take a period of time to “catch up” with DirectionTarget.

Control Points may interrogate the actual fan direction by calling GetFanDirection. This function reads the
value of DirectionStatus. In normal operation conditions, in the steady state, DirectionStatus will return
the same value as DirectionTarget. However, in the case of faults, or external overrides, the actual fan
direction may differ from that requested by DirectionTarget. In such cases, DirectionStatus must return the
actual physical fan direction.

NOTE: It is possible that a Control Point could issue a series of SetFanSpeed or SetFanDirection
commands in rapid succession. The vendor is responsible for ensuring that in all cases, the fan responds
safely, smoothly and without damage to itself. E.g. if a fan is running at (say) 100% speed “forward”, and
a control point switches the value of DirectionTarget to 1 “reverse”, then it is the responsibility of the
vendor to ensure that the fan transitions gradually from 100% “forward” to 0% “stopped” to 100%
“reverse”.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

FanSpeed:1 12

3. XML Service Description

<?xml version="1.0"?2>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
<specVersion>
<major>1l</major>
<minor>0</minor>
</specVersion>
<actionList>
<action>
<name>SetFanSpeed</name>
<argumentList>
<argument>
<name>NewFanSpeedTarget</name>
<direction>in</direction>
<relatedStateVariable>FanSpeedTarget</relatedStateVariable>
</argument>
</argumentList>
</action>
<action>
<name>GetFanSpeed</name>
<argumentList>
<argument>
<name>CurrentFanSpeedStatus</name>
<direction>out</direction>
<retval />
<relatedStateVariable>FanSpeedStatus</relatedStatevVariable>
</argument>
</argumentList>
</action>
<action>
<name>GetFanSpeedTarget</name>
<argumentList>
<argument>
<name>CurrentFanSpeedTarget</name>
<direction>out</direction>
<retval />
<relatedStateVariable>FanSpeedTarget</relatedStateVariable>
</argument>
</argumentList>
</action>
<action>
<name>SetFanDirection</name>
<argumentList>
<argument>
<name>NewDirectionTarget</name>
<direction>in</direction>
<relatedStateVariable>DirectionTarget</relatedStatevVariable>
</argument>
</argumentList>
</action>
<action>
<name>GetFanDirection</name>
<argumentList>

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

FanSpeed:1

13

<argument>

<name>CurrentDirectionStatus</name>
<direction>out</direction>
<retval />
<relatedStateVariable>DirectionStatus</relatedStateVariable>
</argument>
</argumentList>
</action>
<action>
<name>GetFanDirectionTarget</name>
<argumentList>
<argument>
<name>CurrentDirectionTarget</name>
<direction>out</direction>
<retval />
<relatedStateVariable>DirectionTarget</relatedStatevVariable>
</argument>
</argumentList>
</action>

Declarations for other actions added by UPnP vendor (if any) go here

</actionList>
<serviceStateTable>
<stateVariable sendEvents="no">
<name>FanSpeedTarget</name>
<dataType>uil</dataType>
<defaultValue>0</defaultValue>
<allowedValueRange>
<minimum>0</minimum>
<maximum>100</maximum>
<step>1</step>
</stateVariable>
<stateVariable sendEvents="yes">
<name>FanSpeedStatus</name>
<dataType>uil</dataType>
<defaultValue>0</defaultValue>
<allowedValueRange>
<minimum>0</minimum>
<maximum>100</maximum>
<step>1</step>
</stateVariable>
<stateVariable sendEvents="no">
<name >DirectionTarget</name >
<dataType>boolean</dataType>
<defaultValue>0</defaultValue>
</stateVariable>
<stateVariable sendEvents="yes">
<name >DirectionStatus</name>
<dataType>boolean</dataType>
<defaultValue>0</defaultValue>
</stateVariable>

Declarations for other state variables added by UPnP vendor (if any)

go here
</serviceStateTable>

</scpd>

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

FanSpeed:1

14

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

FanSpeed:1 15

4. Test

Testing of the UPnP functions Addressing, Discovery, Description, Control (Syntax) and Eventing are
performed by the UPnP Test Tool v1.1 based on the following documents:

= UPnP Device Architecture v1.0

= The Service Definitions in chapter 2 of this document

= The XML Service Description in chapter 3 of this document

= The UPnP Test Tool service template test file: FanSpeedl.xml

= The UPnP Test Tool service template test file: FanSpeedl.SyntaxTests.xml

The test suite does not include tests for Control Semantics, since it is felt that such tests would not provide
a higher level of interoperability.

© 2000-2003 Contributing Members of the UPnP™ Forum. All Rights Reserved.

